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Abstract

A statistical approach to LiDAR derived topographic attributes for the automatic extrac-
tion of channel network is presented in this paper. The basis of this approach is to use
statistical descriptors to identify channel where terrain geometry denotes significant
convergences. Two case study areas of different morphology and degree of organiza-
tion are used with their 1 m LiDAR Digital Terrain Models (DTMs). Topographic attribute
maps (curvature and openness) for different window sizes are derived from the DTMs
in order to detect surface convergences. For the choice of the optimum kernel size,
a statistical analysis on values distributions of these maps is carried out. For the net-
work extraction, we propose a three-step method based (a) on the normalization and
overlapping of openness and minimum curvature in order to highlight the more likely
surface convergences, (b) a weighting of the upslope area according to such normal-
ized maps in order to identify drainage flow paths and flow accumulation consistent
with terrain geometry, (c) the z-score normalization of the weighted upslope area and
the use of z-score values as non-subjective threshold for channel network identifica-
tion. As a final step for optimal definition and representation of the whole network, a
noise-filtering and connection procedure is applied. The advantage of the proposed
methodology, and the efficiency and accurate localization of extracted features are
demonstrated using LiDAR data of two different areas and comparing both extractions
with field surveyed networks.

1 Introduction

Recent advances in data collection technology, such as airborne and terrestrial laser
scanning, enabled rapid, accurate, and effective acquisition of topographic informa-
tion (Ackermann, 1999; Kraus and Pfeifer, 2001; Briese, 2004; Slatton et al., 2007;
Tarolli et al., 2009). A new generation of high resolution (~1m) Digital Terrain Mod-
els (DTMs) is nowadays widely available, offering new opportunities for the scientific
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community to use detailed representations of surfaces. Terrain geometry defines flow
paths across a watershed, and raster-based DTMs have been widely applied to de-
rive topographic features by using primary topographic attributes as slope, aspect, and
curvature (Florinsky, 1998). The accuracy of feature identification depends on that
of the initial dataset, but remains a challenge, partly due to the multi-scale nature of
geo-morphological processes and partly due to the absence of objective thresholds for
features classification.

Extracting drainage networks from DTMs is one of the most important digital terrain
analysis. Traditionally, extraction methodologies are based on the flow routing model.
Various drainage algorithms (O’Callaghan and Mark, 1984; Quinn et al., 1991; Tar-
boton, 1997; Orlandini et al., 2003) offer possibilities of computing drainage networks
all over the raster surface. They generally follow the procedure of filling pits, computing
flow direction, and computing the contributing area draining to each grid cell (Tarboton,
2003). An alternative to the initial filling procedures is the use of least cost drainage
paths (Hart et al., 1968; Ehischlaeger, 1989). A comparison between traditional sink
filling and more recent techniques applied on a radar derived DTM, has been carried
out by Metz et al. (2010).

However, the conversion from a drainage flow path to a meaningful network requires
a further step. The traditional approach is to use a unique contributing area or slope-
area threshold beyond which the hydrographical network is chosen (O’Callaghan and
Mark, 1984; Tarboton et al., 1991; Montgomery and Dietrich, 1994; Dietrich et al.,
1993; Dalla Fontana and Marchi, 2003). Alternatively, some authors proposed topo-
logical or physical reasoning to establish this threshold (Tarboton et al., 1991; Mont-
gomery and Dietrich, 1988). All these approaches share the idea that flow direction is
strictly dependent from topographic surface, but one must note that physical location of
channel heads, in some situation, is not related just to topographic slope, but depends
on several factors as geomorphic processes involved, soil properties, climatic environ-
ment, land use etc. (Montgomery and Dietrich, 1988; Prosser, 1996; Wemple et al.,
1996; Beven and Kirby, 1979; McGlynn and McDonnel, 2003). In these situations, the
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identification of hillslope-to-valley transition between divergent to convergent surfaces
according to the slope-area relationship does not necessarily correspond to the actual
channel head location (Tarolli and Dalla Fontana, 2009) and a unique value for the
area or slope-area thresholds relationship is not enough to characterize all channels
(Passalacqua et al., 2010b).

Recently, some authors underlined the effectiveness of specific geometric properties
of the topographic surface calculated directly from DTMs to avoid the thresholding is-
sue of classical methods on channel network extraction. Tarboton and Ames (2001)
suggested identification of local curvature to account spatially variable drainage den-
sity. Upwards curved grid cells have been used by other authors to derive channel
networks from digital elevation data (Band, 1986; Gallant and Wilson, 2000). Tarboton
(2003) proposed a procedure based on upwards curved grid cells quantification in or-
der to provide a weight matrix to apply on drainage area computation. He suggested
the use of a statistic threshold based on the constant drop property of channel networks
(Broscoe, 1959) in order to chose the most suitable weighted support area threshold
to map channels. According to this procedure, the constant drop property is assumed
to be constant along the Strahler order and it is considered as a threshold because
it represents the physical transition from channel to hillslope erosion. However, some
authors argued that this thresholding procedure is not applicable when the network
topology needs to be related to morphology (Thommeret et al., 2010).

The idea of extracting networks only where the terrain express a well defined mor-
phology has been recently proved to allow a more robust geometric positioning of
extracted features if compared to the classic approaches. The core idea is to label
convergent cells and connect them on a second step using classical flow routing pro-
cedures or cost functions based upon them. Wavelet analysis to locally filter LIiDAR
elevation data and to detect threshold of topographic curvature and slope-direction
change has been used by Lashermes et al. (2007) to define valleys and portions of
probable channelized areas within the valley. Curvature maps derived from LiDAR
DTM have been used by Tarolli and Dalla Fontana (2009) and Pirotti and Tarolli (2010)
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to assess the capability of high resolution topography for the recognition of convergent
hollow morphology of channel heads and for channel network extraction. Thommeret et
al. (2010) used a combination of terrain morphology indices and a single flow drainage
algorithm to extract badlands thalwegs network from regular grid DTMs. Passalacqua
et al. (2010a,b) applied nonlinear diffusion filtering combined with a geomorphically-
informed geodesic cost function to automatically identify channel initiation points and
extract channel paths from LiDAR data.

For the present work, we proposed a methodology based on the use of normalized
DTM derivatives such as topographic openness (Yokoyama et al., 2002; Prima et al.,
2006) and minimum curvature (Evans, 1979) as a weight for the upslope area We
propose a three-step method based (a) on the normalization of the two parameters
to highlight surface convergences, (b) a weighting of the upslope area according to
such normalization to identify the more likely drainage flow paths, and (c) the choice of
a statistical parameters as objective threshold for channel head and channel network
identification.

2 Study and test sites

We selected two main study sites based on the availability of high-resolution, LiDAR-
derived DTMs and detailed independent field based network location datasets. The
main study site (Cordon), is a geometrically simple shaped area, defined intuitively in
order to include a network and a pour point (maximum flow convergence), without any
a-priori reference to a single well defined hydrological unit. The test area instead, refers
to a more complex form: an headwater catchment (Miozza). This choice has been
done in order to show the accuracy and the objectivity of the proposed methodology
for alpine environment with a complex morphology.

The main study area refers to a rectangular selected area (1.4 km2) located in the
Rio Cordon basin (Figs. 1a and 2), an headwater alpine catchment in the Dolomites.
Available data of this area consist of several field surveys conducted during the past few
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years, including LiDAR survey (data acquired during snow free conditions in October
2006) and DGPS (Differential Global Positioning System) ground observations carried
out in 1995-2001 (Dalla Fontana and Marchi, 2003) and during summer 2008—2009
(Pirotti and Tarolli, 2010).

The test area refers to the headwater catchment of Miozza basin (b, Fig. 1): the area
covers 4.4 km?. Basin elevation ranges from 834 to 2075 m a.s.l. with an average value
of 15630 m a.s.l. Geomorphological settings of the basin are typical of north-eastern
alpine region: deep valleys with high value of slope and significative erosion areas; soil
thickness varies between 0.2m and 0.5 m on topographic spurs to depths of up 1.5m
in topographic hollows. The basin is quite wild and the only significant human activity is
related to occasional forest practices. Available data consist of field surveys conducted
during the past few years (Tarolli and Tarboton, 2006), including LiDAR survey (data
acquired during snow free conditions in 2003) and a DGPS field campaign conducted
during 2006—2007 (Tarolli and Dalla Fontana, 2009).

Channel heads were mapped on the field for both areas (Pirotti and Tarolli, 2010;
Tarolli and Dalla Fontana, 2009): contributing area at channel head location varies sig-
nificantly. For the Cordon area, it ranges between approximately 110 m? to 13000 m?
with an average value of 3099 m? and a median value of 1002 m? (Passalacqua et al.,
2010b). Same analyses carried out for the Miozza basin, show values of contributing
area ranging from 128.6 m? to 96680 m?, with an average value of 6956.95 m? and
a median value of 1481.67 m? (Tarolli and Dalla Fontana, 2009). Considering this high
variability, area and slope-area threshold procedures using a unique value have been
proved to be not reliable for channel network extraction if compared with the real chan-
nel network, especially in areas morphologically complex (Passalacqua et al., 2010b).

3 Topographic attributes

The objective of the work is to delineate the network where surface denotes areas
where flows can converge. A large number morphological indexes directly derived
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from LIDAR DTMs that enables the identification of terrain convergences exists (Gal-
lant and Wilson, 2000) and some have already been used for network extraction (Tar-
boton and Ames, 2001; Molloy and Stepinski, 2007; Lashermes et al., 2007; Tarolli
and Dalla Fontana, 2009; Pirotti and Tarolli, 2010; Passalacqua et al., 2010a,b). For
the present work, flow convergence has been evaluated through a multiple flow direc-
tion algorithm (Quinn et al., 1991), while local concavity has been analyzed through
two primary topographic attributes: openness (Yokoyama et al., 2002) and minimum
curvature according to Evans’ (1979) formulation.

3.1 Upslope area

For the present work, we decided to use a multiple flow direction algorithm for up-
slope area evaluation (Quinn et al., 1991). Several studies have shown differences
connected to the choice of single- and multiple-flow direction algorithms on predict-
ing channel networks (McMaster, 2002; Endreny and Wood, 2003), on the location of
ephemeral gullies (Desmet and Govers, 1996), on modeled erosion and sedimentation
rates (Schoorl et al., 2000), spatial patterns of saturated areas (Guntner et al., 2004),
and on the statistical distributions of terrain attributes (Quinn et al., 1991; Wolock and
McCabe, 1995; Desmet and Govers, 1996; Tarboton, 1997). Locations of ephemeral
gullies and channel networks are better identified by algorithms with limited flow di-
vergence, but upslope area computed through multiple flow algorithms could make it
possible the identification parts of channels likely to be active also under conditions of
low or moderate flow and it allows the recognition of minor channel features which are
involved in flow processes during floods. Multiple direction algorithms (MDF) tend to
produce a dispersive flow patterns but at the same time they produce a more realistic
looking spatial patterns than the single flow ones by avoiding concentration to distinct
lines (Seibert and McGlynn, 2007). The main disadvantage of the base MDF algorithm
is that the area from one cell is routed to all downslope cells and thus is dispersed
to a large degree even for convergent hillslopes. Flow randomization and concentra-
tion can be implemented (Schwanghart and Kuhn, 2010) providing correction to this
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unrealistic behavior and other algorithms based on triangular facets have been devel-
oped to overcome these weaknesses (Tarboton, 1997; Seibert and McGlynn, 2007).

3.2 Minimum curvature

For any two dimensional continuous surface Evans (1972, 1979, 1980) considers five
terrain parameters corresponding to groups of 0, 1st and 2nd order differentials, where
the 1st and 2nd order functions have components in the xy and orthogonal planes.
Curvature is the second spatial derivative of the terrain. Generally the most appropriate
curvature form depends on the nature of the surface patch being modelled.

The general concept is to approximate surfaces to a bi-variate quadratic function in
the form (Evans, 1979):

Z=ax?+by?+cxy+dx+ey+f (1)

where x, y, and Z are local coordinates, and a to f are quadratic coefficients.

Other algorithms for calculating land surface curvature(s) have been referenced
(Evans, 1972; Horn, 1981; Zevenbergen and Thorne, 1987; Mitasova and Hofierka,
1993; Shary et al., 2002). However, Evans’ (1979) method is one of the most suit-
able at least for first-order derivatives (Shary et al., 2002) and it performs well in the
presence of elevation errors (Albani et al., 2004; Florinsky, 1998).

The two most frequently calculated forms are profile and plan curvature (Gallant and
Wilson, 2000). These two measures involve the calculation of the slope vector, there-
fore they remain undefined for quadratic patches with zero gradient (i.e., the planar
components d and e are both zero). In such cases, alternative measures independent
from slope need to be substituted. Evans (1979) suggests two measures of minimum
and maximum curvature:

Crax=—-a-b+\[/(a=b)2+c? (2)

Cmin=—-a-b-\/(a-b)2+c? (3)
9334
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The coefficients in Eqg. (1) can be solved within a moving window using simple combi-
nations of neighbouring cells: the standard method to solve them involves calculating
the parameters for a central cell, related to its eight neighbours in a moving 3x3 cell
window.

To perform terrain analysis across a variety of spatial scales different authors (Yokoya
and Levine, 1989; Wood, 1996) solved the bi-quadratic equation using a nxn window
with a local coordinate system (x, y, z) defined with the origin at the pixel of interest
(central pixel).

Calculation of curvature using a local window is scale dependent, therefore Eqgs. (2)
and (3) are modified by generalizing the calculation for different window sizes (Wood,
1996):

Cmax=n-g(—a—b+\/(a—b)2+02) (4)
Cmin=n-g(—a—b—\/(a—b)2+02) (5)

where g is the grid resolution of the DTM, and n is the size of the moving window.

These two formulae have been widely used in literature for multi-scale terrain anal-
ysis (Wilson et al., 2007) and for morphometric feature parameterization (Eshani and
Quiel, 2008) since they are directly related to geomorphologic form, where surface
concavities and convexities are detected. A mean curvature (C,,can) derived from these
two formulae has been used by Pirotti and Tarolli (2010) for channel network extraction.
Cavalli and Marchi (2008) applied the same generalization procedure to plan curvature
formulation, for the characterization of surface morphology.

Channelized landform elements are formed around depressions in curvature and
are thus referred to as concave elements, therefore we decided to use C,,, (EQ. 5)
as optimal for feature recognition (Figs. 7c and 8c). A progressively increasing mov-
ing window size (from 3x3 to 33x33 cells) has been considered for the calculation of

9335

| Jadeq uoissnosigq | Jadedq uoissnosiqg | Jaded uoissnosi(

Jaded uoissnosiqg

HESSD
7, 9327-9365, 2010

Channel network
identification from
high-resolution DTM:
a statistical approach

G. Sofia et al.

o
<


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/7/9327/2010/hessd-7-9327-2010-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/7/9327/2010/hessd-7-9327-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

curvature, in order to reduce the effect of noise and small scale variation in the DTM
(Fig. 3a).

3.3 Openness

Openness is a morphometric parameter developed by Yokoyama et al. (2002), express-
ing the degree of dominance or enclosure of a location on an irregular surface. It is an
angular measure of the relation between surface relief and horizontal distance (Prima
et al., 2006).

Topographic openness is calculated as the average of either zenith (¢) or nadir (y)
angles along eight azimuths D (0, 45, 90, 135, 180, 225, 270 and 315) within a radial
distance L (Yokoyama et al., 2002). Openness always assumes a positive sign and its
values range from 0 to 180°. The parameter is designated “positive” and “negative” in
the same sense as it has been used to express terrain-slope curvature (Pike, 1988):
positive openness ¢, is convex-upward and refers to calculation with zenith angles;
negative openness y; is concave-upward and refers to evaluation with nadir angles
(Yokoyama et al., 2002).

Along the azimuth D the zenith angle p @, at a grid within radial distance L is

p®L=90-p0; (6)

and the nadir angle py; is

oW =90-p06; (7)

Positive openness ¢, of a location on the surface within a distance L on DTMs is

DL = (0P +asPL + - 3159.)/8 (8)

and negative openness y; within the L distance is

W = (oW +asW, +.-315¥,)/8 9)
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Representation of positive openness are designed to highlight topographic convexities,
showing higher openness values for ridges and lower values for concavities, maps of
negative openness emphasize drainages (higher values) at the expense of convex-
overall features (Yokoyama et al., 2002) (Figs. 7a,b and 8a,b).

To perform terrain analyses maintaining homogeneity with curvature evaluation,
openness maps have been carried out considering nxn moving window (Wood, 2009)
(Fig. 3b). Instead of a radial distance L, we considered the distance between the centre
of the central pixel and the centre of surrounding ones considered within the window
size (n).

4 Kernel size evaluation

A naturally measured sample, according to the central limit theorem (Duda et al., 2001)
tends to lead to a normal distribution. Values of the elevation of a smoothed terrain tend
to have a symmetric distribution in a well selected window with slow-changing terrain
(Bartels et al., 2005). Differently, in the presence of noises and terrain roughness, such
a histogram tend to be more or less skewed to one side. Skewness of original eleva-
tion data can influence the shape of the distribution of derived topographic attributes:
selecting an appropriate window is therefore critical. In a flat region, this window can
be fixed and selected a priori, but in a complex and hilly region, imbalanced terrain
elevation affects the histogram distribution and increases or decreases the distribution
skewness (Yuan et al., 2008).

For this work, the channel pattern recognition and classification is based on the as-
sumption that a deviation of values from their normal distribution can delineate a thresh-
old between well organized valley axes and occurrence of localized convergent topog-
raphy (Lashermes et al., 2007). This evaluation is carried out through the analysis of
a graphical representation of distributions (Chap. 5). To underpin the basis assump-
tions of the work, meaningful measure are required to describe distributions properly
and to describe how kernel size can affect them. The shape of a distribution can be
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quantitatively described according to its moments: the first moment refers to its mean,
the second to its variance (the positive square root of which is the standard devia-
tion, o), the third and fourth moments refers, respectively to skewness and kurtosis.
Tarolli and Dalla Fontana (2009) showed the effectiveness of standard deviation as
a threshold value for channel heads identification and the efficiency of statistical values
of distribution as threshold for feature extraction on similar areas have been proved by
Pirotti and Tarolli (2010).

For our network extraction procedure, skewness (Eq. 10) has been chosen to define
the most appropriate kernel for parameters evaluation, since not-null skewness val-
ues are representative of non-symmetric/non-normal distributions. Skewness can be
defined as:

E(x-p)°
= —
where u and o are, respectively the mean and the standard deviation of the distribution
and E (t) represents the expected value of the quantity .

The proposed approach is that a window size that causes a deviation of skewness’
value from the pattern should been chosen as the most suitable window size for param-
eters elaboration. We suggest, to underline the work assumptions, that this deviation
should refer to a stationary point (extreme skewness value) representing an higher
asymmetry on the topographic attribute distribution, therefore a better suitability of the
dataset to be used for thresholding based on analysis of defined divergence from nor-
mality.

For our elaborations, we should note that openness evaluated at small scale (n=3)
for both areas tends to produce normally shaped distributions (skewness near zero).
The increasing of the window scale causes a progressive skewing of the distribution
toward the left (increasing negative values for the skewness) until a minimum value is
reached (approximately n=15), then the distribution moves slightly back toward nor-
mality (Fig. 4a,b). Difference on skewness dynamics on the two areas for curvature
depends on the higher morphology complexity on the Cordon basin (El. A. Fig. 2),
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where small windows sizes cause a too high detection of noises not necessarily related
to channelized processes. For the Cordon area, we can observe that the increasing
of the window scale determines a progressive normalization of values (skewness in-
creases toward 0). For n=7, a change of slope of this increasing is registered (Fig. 4a).
On the Miozza basin, instead, curvature skewness follows openness’ but the minimum
value is reached faster (n=11 for curvature respect n=15 for openness) (Fig. 4b).

In the course of finding extreme points, a useful tool is the differential calculus that
provides a description of the rate of change of a function. According to its main defi-
nition, an inflection point refers to a point at which the derivative of the representative
function vanishes. For each of our skewness dataset, we evaluate a parametric fitting
by using high order polynomials to obtain a function sk*=f(n) representing the contin-
uous variation of skewness according to the kernel size (n). The polynomial order has
been iteratively chosen in order to provide a curve having at least a derivative at one
point n in the domain of f included within the adopted kernel size range (3-33).

We suggest that the optimum kernel size should refers to the minimum n value de-
termining the vanishing of the skewness first derivative (Fig. 5a,b). For minimum cur-
vature, this value refers to n=11.56 for the Cordon area (El. i in Fig. 5a) and n=10.54
for the Miozza one (El. ii in Fig. 5b). Derivative vanishing for positive and negative
openness for the Cordon area, is registered at n=12.20 and n=17.55, respectively. On
the Miozza basin, positive and negative openness derivatives vanish, respectively for
n=12.27 and 16.79 (El. ii in Fig. 5b).

For topographic parameters elaboration, the kernel size has to be an integer odd
number, therefore stationary point values have been rounded to the closest odd inte-
ger. According to the proposed procedure, a kernel of n=11 has been chosen for mini-
mum curvature on both areas. To give homogeneity to the evaluation of the parameter
among and nadir angles, the mean value between the positive and negative openness’
stationary points coordinates (14.87 and 14.53 for the Cordon and the Miozza site,
respectively) has been rounded to n=15 for openness maps evaluation.
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One should note that for both the study areas, according to this methodology, the
same windows sizes have been chosen, without any subjective decision.

5 Upslope area weighting procedure

For the present work the Quinn’ (1991) flow accumulation algorithm was modified using
a weight factor W dependent on local morphology:

Ay=f(W,r) (11)

where A, is the weighted upslope contribution area for a given pixel and r(x,y) is the
pixel location on the DTM. The main difference from a conventional MDF flow accumu-
lation is to provide a map of W, directly related to geomorphologic form, where surface
concavities and convexities are detected.

The weighted upslope area is an implicit description of how much water the upslope
area can accumulate according to its degree of convergence. Given a defined ups-
lope value, the weighted upslope amount is depending both on upslope contributing
area and local convergence of morphology, represented by a weight matrix W (Eq. 16,
Figs. 7d and 8d) identified through normalized values of openness and curvature. If
a pixel relies on a convergent morphology, the value of upslope area for that pixel will
be increased proportionally to its degree of convergence, while if it lies on divergent
morphology, its upslope value will be diminished.

For maps normalization, we evaluated for each attribute map a Quantile-Quantile
plot (QQ-plot) (Fig. 6a). This graphical operator compares ordered values of a variable
with quantiles of a specific theoretical distribution (here Gaussian) representing the
relative likelihood of this random variable to occur at a given point in the observation
space. The deviation from a straight line indicates a deviation of the probability density
function from the Gaussian and therefore deviation of the values from the overall pat-
tern of points. In the work of Lashermes et al. (2007) and Passalacqua et al. (2010a,b)
QQ-plots of landform curvature were used to objectively define curvature thresholds
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for channel network extraction. They suggested that the deviation from the normal dis-
tribution records an approximate break in which higher values delineate well organized
valley axes and lower values record the disordered occurrence of localized convergent
topography. Although maps of openness resemble images of shaded relief and slope
angle, they actually represent surface concavities and convexities. Therefore in this
study we suggested that the deviation from the normal distribution recorded both for
openness (y; and ¢,) and C,,, QQ-plots represents the likely threshold for channels
identification. For y; , we consider the break on higher values (right tail of distribution),
while for ¢, , we considered the break for lower values — left tail — (Egs. 12 and 13).
For C,,i, we evaluated the break on negative side (El. i in Fig. 6a) that, following Evans’
approach, corresponds to convergent topography (Evans, 1979; Wood, 1996) (Eq. 14).
According to these formulation channel are identified where

w; > QQ-ploty, (12)
@, <QQ-ploty,, (13)
Cnmin < QQ-ploty,, (14)

where the term “thr” (threshold) is related to the value corresponding to the break in
the QQ-plot (El. i in Fig. 6a) evaluated for each map.
Maps normalization has been evaluated according to QQ-ploty,, using the procedure

1
Nep=f(—r TA 15
T (Qo plotey ‘”)) (15)

where N5, stands for the normalized topographic attribute considered (openness or
curvature) for a given pixel and TA, ) is the topographic attribute at the pixel of interest
(Fig. 6c).
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The obtained weight grid for upslope area weighting procedures (Figs. 7d and 8d)
refers to:

(Mew)- (M)

W= (16)
(No,)

where N stands for normalization procedure for each topographic attribute map ac-
cording to Eq. (15). The normalized positive openness map appears to be on the form
1/N¢, in order to assign higher values to convergent topography as for other maps.

6 Network detection

Field surveyed channel heads for the study area show that observed contributing ar-
eas vary significantly and this suggests that a constant value for network extraction
might not be a good assumption (Passalacqua et al., 2010b). Average contributing
area can be used to define thresholds, but the resulting drainage densities are too
high (Passalacqua et al., 2010b). Accurate objective location of channel network from
DTMs remains therefore a challenge. For the present work we proposed a sound
method to identify these features using an objective threshold based on statistical val-
ues of distributions and shape descriptors. The effectiveness of similar approach for
feature extraction have been proved by Pirotti and Tarolli (2010) and Passalacqua et
al. (2010a,b). We suggest that channel network can be identified by thresholds depen-
dent on the weighted upslope area values distribution. In order to identify this threshold,
the weighted upslope area has been standardized according to a z-score procedure,
indicating how many standard deviations each observation is above or below the mean.

The standard score (z-score) is a dimensionless quantity and for the /-th observation
of a random variable x at a point / is given by:
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(17)

where u and o are, respectively the mean and the standard deviation of the distribution.

Values that are larger than the mean have positive z-scores and values that are
smaller than the mean have negative z-scores. If a value equals the mean, then x; has
a z-score of 0.

This normalization allows comparison of observations from different distributions.
Z-score transformation changes the central location of the distribution and the average
variability of the distribution, but it does not change its skewness or kurtosis.

In order to obtain a threshold that could maintain the characteristic of clear descriptor
of distribution shape and its independency from sample size, we chose to define the
threshold for channel head and network identification at z-score equal to 0. Channel
network is therefore identified by those pixels that satisfy the relation

ZA, >0 (18)

where ZA,, is the z-score of the weighted upslope area (Eq. 17) at each pixel.

7 Noise filtering

Direct application of openness and curvature independently produce typically segmen-
tation of the resulting raster, because of the numerous local convergences that exist in
real surfaces due to inherent noise. The use of weighted upslope area, allows a better
connection, but noises are still relevant. While on areas with a low degree of mor-
phological complexity (Miozza), noises can be easily discarded on the produced map
through simple filtering based on the majority of contiguous neighboring cells, when
the procedure is applied to areas with complex morphology (Cordon, Fig. 2), noise de-
tection becomes more challenging. One opportunity to discard false positives (noises)
is to analyze those regions that show high fragmentation and to analyze the magni-
tude of this fragmentation in order to mark areas with high degree of morphological
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disorganization. It is generally difficult to obtain relevant markers automatically without
any interaction by the user, therefore we suggest an approach that can be useful, once
the proposed automatic procedure has been applied, to interactively discard localized
patterns and misleading noisy cells which do not actually represent the features. This
approach is not fully automatic, but it can be used to assist interactively the inter-
preter/user on the task of identifying the network.

We suggest that that noises can be related to higher randomness of values of the
original elevation data, while concavities related to channels refer to patterns with a bet-
ter organization. We suggest that a good representation of the elevation organization
can be identified through the analysis of water movement for each cell. Flow is defined
by any cell within a neighborhood that has a higher value than the processing cell. The
output map that results from the function represent the pattern of the flow into each cell.
In order to test the degree of organization of this map, we evaluate a statistical measure
of randomness, referenced as Entropy (Gonzales et al., 2003). We produce a raster
map where each output pixel contains the entropy value of the nearest neighborhood
according to the formulation

Entropy = - > p;-logp; (19)

where p; is the proportion of pixels that are assigned to each class.

For class evaluation, flow convergence values have been converted to unsigned 8-
bit integer so that the pixel values become discrete and directly correspondent to a bin
value on the range 1-255 (Gonzales et al., 2003).

To maintain homogeneity with the full procedure, cells neighborhood has been de-
fined according to an average window size (n=13) between the chosen ones for curva-
ture and openness.

We suggest to observe the entropy degree on areas where extraction produce not
clear results and to discard those extractions obtained in areas with values of entropy

higher than the average (Fig. 9b). According to this analysis, some noises (El. i, ii in
Fig. 9) can be discarded. Element iii in Fig. 9 refers to a channel referenced on maps
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but actually not active on the area, therefore it has not been considered for quality
evaluation.

Once we applied the two filtering procedures (majority filter for the Miozza basin and
entropy analysis for the Cordon area) the remaining network needs a connection pro-
cedure. Considering a pour point (maximum value of flow convergences) we identified
the most suitable (shortest) flow path from each channel head to the pour point. This
path has been identified as the least accumulative cost distance to the pour point over
a cost surface set as the Euclidean distance of each pixel from the correct extraction.
For a fuller discussion of accumulated costs surfaces methods and representational
accuracy see Douglas (1994) and Eastman (1989). Similar approach to network con-
nection has been successfully tested in the work of Passalacqua et al. (2010a,b) where
channel networks were detected by the use of non linear diffusion and geodesic path.

8 Results and discussion

The final product is a map representing the channel network. The overall quality of
the extraction results has been evaluated considering Cohen’s k index of agreement
(Cohen, 1960) respect to a DGPS surveyed network (Pirotti and Tarolli, 2010).

For accuracy assessment the extracted networks (Figs. 10b and 11b) have been
compared with reference channel network surveyed on the study areas (Figs. 10a and
11a).

The quality measure used for this accuracy assessment was defined as

P,-P,
T 1-P,
where F, is the total agreement probability evaluated according to Eq. (21), and P,

is the agreement probability which is due to chance, according to the formulation in
Eq. (22) (Cohen, 1960).

k (20)
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Py= D P(x;) (21)

Po= D P(x)P(x;) 22)

where / is the number of class values, P(x ;), P(x; ) are the columns and rows marginal
probabilities, respectively and P(x;;) are the agreeing extracted values.

Perfect agreement results in a Cohen’s k value of 1.0, while a value of 0 indicates
a level of agreement due to chance alone. Although no definitive reference scale exists
for Cohen’s k values for hydrological applications, prior reports of the index in other
fields suggested a scale for Cohen’s k values and their level of agreement between
datasets: values of k lower than 0.2 indicate slight agreement, 0.20—0.40 represent
a fair agreement, 0.40-0.60 moderate agreement, 0.60—0.80 substantial agreement,
and 0.80-1.00 indicates almost perfect agreement (Landis and Koch, 1977).

For indexes evaluation, buffer zones were generated around the extracted network
as well as the reference one. The chosen buffer width was set to 5m according to
a previous work carried out on the Cordon area using the same dataset, where analysis
of results had been performed using the same quality measure (Pirotti and Tarolli,
2010). To maintain homogeneity, the same buffer width has been considered for both
the Cordon and the Miozza case study.

The extraction procedure generates a network characterized by a substantial agree-
ment between extracted features and reference ones for both applications: Cohen’s k
is 0.78 and 0.63 for the Cordon area and the Miozza basin, respectively (Table 1).
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9 Final remarks

This work analyzed a statistical approach to a combination of topographic attributes
for channel network identification in a complex mountainous terrain. Our primary focus
has been to develop and present a method that was capable to accurately describe
the drainage network using objective thresholds without an a-priori knowledge of the
study area. The methodology includes two main aspect: (a) normalization of openness
and minimum curvature maps according to their QQ-plot;,, and their combination in
order to produce a weight matrix that highlights potential surface convergences and (b)
a thresholding procedure based on statistical analysis of values distribution applied to
weighted upslope area. The methodology has been applied first to a rectangular area
on a study site and then to a fully-organized basin used as test site. Both extracted
features were then compared with the field surveyed networks.

Field observed contributing areas to channel heads vary significantly and a constant
contributing area applied to channel network extraction is not suitable for basins where
channel network initiation depends on different morphological processes. The use of
statistic operators as objective indexes for maps normalization and thresholding proce-
dures results on a network correctly delineated without the need to subjectively chose
an area threshold parameter derived from field survey. Applying the proposed proce-
dure using normalized landform attributes for surface convergence identification allows
furthermore the definition of a drainage network strongly consistent with surface mor-
phology. Automatic detection of plausible network based on thresholding operations
was demonstrated as efficient in terms of time consumption and valid to associate
shapes and pattern derived from high resolution topography with real topographic sig-
nature of flow processes. The approach, anyway, present some limits, especially in
areas with complex morphology where also other surface features not related to chan-
nel networks are detected. Network extraction carried out using openness and curva-
ture independently, could be capable of representing an overall channel network pat-
tern, however such methods show some flaws detecting some localized patterns and
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misleading noisy cells which do not actually represent the features, and they includes
some gaps causing difficulties on connecting the extracted feature into a meaningful
network without an a-priori knowledge of the environment. These parameters yet are
able to provide a quantitative and qualitative description of the network and to provide
overall information about position and orientation of local convergences. The analysis
of surface entropy has been proven in this case to be a useful tool to assist the user on
discarding doubtful extractions, such those reached at the top of our study area and it
can be used to interactively assist the interpreter/user on the task of automatic network
mapping. Finally, shortest cost path procedures applied to the filtered maps, allow the
definition of a meaningfully connected network. The result are accurate and promising
for practical applications.
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Table 1. Assessment of results: quality index adopted for network extraction (Cohen’s k,

Eq. 20).

Cohen’s k
Cordon study area 0.78
Miozza basin 0.63
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Fig. 2. Example of complex morphology on the upper part of the Cordon basin. The high
degree of complexity (A) and the rapid slope change (B) define two of the main issues related
to channel network extraction on this area according to topographic parameters and classic

thresholding procedure, respectively.
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Fig. 3. Example of kernel size effect on minimum curvature (A) and negative openness (B) for
the Cordon study site according to an increasing window size (n) of 3, 15 and 33 cells.
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Fig. 4. Skewness for each topographic attribute according to window size (n) for the Cordon

study site (A) and the Miozza basin (B).
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one.

9359

| Jadeq uoissnosigq | Jeded uoissnosiq | Jaded uoissnosiqg

Jaded uoissnasiq

HESSD
7, 9327-9365, 2010

Channel network
identification from
high-resolution DTM:
a statistical approach

G. Sofia et al.

(8)
@

2


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/7/9327/2010/hessd-7-9327-2010-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/7/9327/2010/hessd-7-9327-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/

QQ-Plot

Minimum curvature (m )
Minimum curvature (m ')

QQ-Plot

QQ-Plot: -
Crmin =-0.033 m’

EE T
Standard normal variate

o am 7 ET I

Minimum Curvature
M Convex

. Concave

Normalized map
Channels

> QQ-Plot g,
-Plot
I Ridges . <00 "

A

N

Fig. 6. Cordon study area: topographic attribute map normalization. Example of QQ-plot (A)
for minimum curvature and identification of threshold (i) to apply in order to normalize the map.
Minimum curvature for n=9 (B) and derived normalized map (C) are shown.
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Fig. 7. Cordon study area: positive (A) and negative (B) openness, minimum curvature (C)
and weight matrix (D) derived through normalization and overlapping.
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Fig. 8. Miozza basin: positive (A) and negative (B) openness, minimum curvature (C) and
weight matrix (D) derived through normalization and overlapping.
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Fig. 9. Cordon study area: local entropy according to flow convergences (A) and identification

of meaningful (blue) and doubtful (red) pixels (B).
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Fig. 10. Cordon study area: reference network (A) and network extracted through the proposed

methodology (B).
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Fig. 11. Miozza basin: reference network (A) and network extracted through the proposed

methodology (B).
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